Researchers have developed a sophisticated new tool that could help provide early warning of rare and unknown viruses in the environment and identify potentially deadly bacterial pathogens which cause sepsis, among other uses.
The new algorithm is an advanced tool that can help develop probes to capture trace quantities of pathogens, both known and unknown from a wide variety of situations, like the animal-to-human transmission of infections such as SARS-CoV-2 or monitor reservoirs in the environment for possible emerging pathogens.
To date most labs have bulk sequenced samples, a laborious and costly process that typically requires scientists to tease out and then reassemble minute fragments of specific DNA, which are difficult to detect and often contaminated by the billions of other organisms in the same sample or environment.
Pathogens in clinical or wildlife settings samples of blood or saliva, for example, are particularly challenging to isolate, since they can easily make up less than one one-millionth of a sample, especially in early stages of an infection, when concentrations are still low and detection is most critical for patients.
Researchers successfully tested the probes on the entire family of coronaviruses, including SARS-CoV-2. The probes provide a shortcut by targeting, isolating and identifying the DNA sequences – specifically and simultaneously – that are shared among related organisms, most often due to evolutionary history or ancestry.
“There are thousands of bacterial pathogens and being able to determine which one is present in a patient’s blood sample could lead to the correct treatment faster when time is very important,” explains the lead author of the study.
“The probe makes identification much faster, meaning we could potentially save people who might otherwise die,” the author says.
Researchers also demonstrated the effectiveness of probes for capturing the incredibly wide array of pathogens associated with sepsis, a life-threatening and rapidly developing condition that occurs when the body overreacts to an infection which typically starts in the lungs, urinary tract, skin or gastrointestinal tract.
"We currently need faster, cheaper and more succinct ways to detect pathogens in human and environmental samples that democratize the hunt and this pipeline does exactly that,” says the senior author.
The discovery also holds promise for much broader applications for human health and scientific discovery, including the identification of intestinal parasites in ancient DNA, which could reveal new information on the evolution of catastrophic disease.
The process used to design the probes, a pipeline called HUBdesign or Hierarchical Unique Baits, is described in the journal Cell Reports: Methods, published online today.
https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(21)00121-1
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fprobe-design-for&filter=22
Simultaneous identification of diverse pathogens
- 1,026 views
- Added
Latest News
Humans can intermittently r…
By newseditor
Posted 04 Dec
Why young kids don't get se…
By newseditor
Posted 04 Dec
Phosphatidylinositol 3,5-bi…
By newseditor
Posted 04 Dec
Probiotic-guided CAR-T cell…
By newseditor
Posted 04 Dec
Cell atlases of the human b…
By newseditor
Posted 04 Dec
Other Top Stories
Do an Altered Gut Microbiota and an Associated Leaky Gut Affect COV…
Read more
Ciliary body of the eye
Read more
How the brain paralyzes you while you sleep
Read more
Restricted diet and glucose uptake in the brain lead to longer life
Read more
A personalized neuromodulation approach to severe depression
Read more
Protocols
Cheap, cost-effective, and…
By newseditor
Posted 03 Dec
Temporally multiplexed imag…
By newseditor
Posted 02 Dec
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Publications
Behavioral and brain respon…
By newseditor
Posted 04 Dec
Toward low-cost gene therap…
By newseditor
Posted 04 Dec
The bidirectional immune cr…
By newseditor
Posted 04 Dec
Leveraging human immune org…
By newseditor
Posted 04 Dec
Single-cell long-read seque…
By newseditor
Posted 04 Dec
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar