Stent monitoring with non-invasive technique!

Stent monitoring with non-invasive technique!

Researchers have created a new field probe to detect in a non-invasive and non-ionizing way the presence of metallic stents as well as their potential structural failures through microwave spectrometry (MWS). Results were published in the journal Scientific Reports.

Coronary artery disease (CAD) is the main cause of death in developed countries. It is usually caused by atherosclerosis, characterized by accumulation of cholesterol and other fatty substances in artery walls that can create coagula such as angina or heart attack. Treatment for CAD comprises changes in the lifestyle to modify coronary risk factors and several drugs, but when coronary obstructions are important, it is necessary to carry out a revascularization treatment through percutaneous coronary intervention (PCI) or coronary surgery.

PCI is a minimally invasive procedure which involves balloon dilatation in the obstructed area, and the introduction of a small stent. In some cases, and over time, the coronary stent can fail due a restenosis process, that is, proliferation of cells in the vascular wall that ends up blocking the vessel, or due a thrombosis process, when a stent obstruction occurs due the formation of a thrombus. Several phenomena have been related to a higher risk of these failures: a fracture process of the stent metallic structure can happen; in other cases there can be a lack of contact between the artery wall and the stent (incomplete stent apposition); and in other cases an incomplete expansion of the stent can occur, reducing its thickness.

There isn't any available technology to detect in a non-invasive way such phenomena like fracture, incomplete stent apposition or incomplete expansion, even the presence of restenosis. "Invasive techniques like coronary angiography, intravascular echography and optical coherence tomography are expensive and cannot be used on all patients with coronary stents", states first author of the article. In addition, these techniques are complex and require specific equipment which is not available in all hospitals.

"The MWS probe consists on a small device that produces electromagnetic waves similar to the ones in a mobile phone and which detects modifications that occur in that wave due to the stent" says another author.
In order to test this new probe, researchers "carried out the stent subcutaneous implantation in a murine model where we detected the presence of devices as well as restenosis-derived changes and fracture through variation of resonance frequency, common in microwave absorption spectra, which reflect the occurrence of changes in the length and the diameter of the stent", says the author.

In particular, the study included five control animals, with a subcutaneous stent implantation simulation, and ten experimental animals in which a metallic stent was introduced in the interscapular region. Basal measurements were carried out before and after the stent implantation on the days 0, 2, 4, 7, 14, 21 and 29 of its monitoring. In addition, five animals from the experimental group were analyzed through MicroCT in the same study time periods. After 29 days, three animals were subject to a stent fracture.

As a result, since the stents colonized with fibrotic tissue as a natural response to its subcutaneous implantation, the new probe detected significant differences of its content from its basal implementation to its 30 days of monitoring (restenosis). Finally, researchers could differentiate through microwave spectrometry those stents that were fractured to the ones that were still complete.

In short, according to the researchers, "we need more studies to verify these results and we think it is necessary to move these experiments to a pre-clinical model in animal models that are similar to humans, and if corroborated, this technology should be validated in a small cohort of patients".

"We are working on the technological aspects that will allow us to conduct pre-clinical experiments and their implications in a future clinical application", says another researcher, "this involves, among other things, the development of devices with the ability to detect stents at increased depths and detection techniques that tolerate the movement of stents in coronary arteries".