Sensing a hug from your friend through a video call with him/her may become a reality soon. A joint-research team consisted of scientists and engineers has developed a skin-integrated virtual reality (VR) system, which can be controlled and powered wirelessly. The innovation has great application potential in communications, prosthetic control and rehabilitation, as well as gaming and entertainment.
Skin is the largest organ of the body. But compared with the eyes and ears, it is a relatively under-explored sensory interface for VR or augmented reality (AR) technology. At present, VR and AR devices usually relies on vibratory actuation imparted to the skin by electrical motors. But it involves bulky wires and battery packs attaching to the body, limiting its applications.
Researchers have developed an integrated skin VR system which can receive commands wirelessly, and then simulate the "touch" with vibration, overcoming the above shortcomings. The user can feel the touch easily by putting a bandage-like thin, soft and adhesive device on the skin.The research findings were published in the latest issue of the highly prestigious scientific journal Nature.
With the meticulous design based on structural mechanics, this pioneering skin-integrated VR device is comprised of hundreds of functional components, including the actuators simulating touch by millimeter-scale mechanical vibration. These components are integrated into a thin silicone-coated elastomeric layer with a thickness of only 3 mm. It is breathable, reusable and functional at a full range of bending and twisting motions.
More importantly, a collection of chip-scale integrated circuits and antennae embedded inside the skin VR device allows it to be powered and controlled wirelessly.
"The haptic actuators can harvest radio frequency power through the large flexible antenna within a certain distance, so the user wearing the device can move freely without the trouble of wires," the author explained. The system can be operated within a distance of as far as one meter, which is 10 times of existing maximum distance using similar technologies.
And since the new system uses advanced mechanical design, the haptic actuators require less than 2 milliwatts to induce a notable sensory vibration, while the conventional direct-current driven ones need power of about 100 milliwatts to produce the same level of vibration.
"Thus, we solved the difficult problem of transmission by low-power wireless function and significantly increased the distance of the operation for our system. This system not only saves power but also allows users to move more freely without the trouble of wires," the author said.
The team has spent about two years to develop this wireless skin VR system, which involves various disciplines such as mechanical engineering, materials science, biomedicine, physics and chemistry. They are running application trial for the users of prostheses to feel the external environment through the sense of touch and provide feedback to the users. "It can help them to feel the external stimulation with their prosthesis, such as the shape or texture of an object," said the author. In addition, it can be used for developing virtual scenes for clinical applications.
Also,the authors believe the system can greatly enhance sensory experience in social media interactions, multimedia entertainment, surgical training and beyond.
To fabricate an electronic skin which can feel temperature will the next step of their research.
https://www.nature.com/articles/s41586-019-1687-0
Virtual and augmented reality enhanced by touch
- 7,168 views
- Added
Edited
Latest News
Reducing vitamin B5 slows b…
By newseditor
Posted 01 Dec
Mouse brain is 'rewired' du…
By newseditor
Posted 01 Dec
How formaldehyde affects ep…
By newseditor
Posted 30 Nov
Distinct brain activity tri…
By newseditor
Posted 30 Nov
AI based histologic biomark…
By newseditor
Posted 30 Nov
Other Top Stories
Slowing the glioma growth!
Read more
Why cancer most frequently spreads to the liver
Read more
Internal factors involved in burst of mutational patterns in cancer…
Read more
Breast cancer risk with BRCA1/2 mutation depends on pregnancies
Read more
Genomic analysis of a single patient reveals a kinase gene mutation…
Read more
Protocols
Efficient elimination of ME…
By newseditor
Posted 01 Dec
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Publications
Sensory neuronal STAT3 is c…
By newseditor
Posted 01 Dec
Vitamin B5 supports MYC onc…
By newseditor
Posted 01 Dec
Longitudinal evolution of d…
By newseditor
Posted 01 Dec
Pre-RNA splicing in metabol…
By newseditor
Posted 01 Dec
Pleiotrophin ameliorates ag…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar