A team of engineers has developed an electronic patch that can monitor biomolecules in deep tissues, including hemoglobin. This gives medical professionals unprecedented access to crucial information that could help spot life-threatening conditions such as malignant tumors, organ dysfunction, cerebral or gut hemorrhages and more.
“The amount and location of hemoglobin in the body provide critical information about blood perfusion or accumulation in specific locations. Our device shows great potential in close monitoring of high-risk groups, enabling timely interventions at urgent moments,” said the corresponding author of the study.
The work is published in the journal, Nature Communications.
Low blood perfusion inside the body may cause severe organ dysfunctions and is associated with a range of ailments, including heart attacks and vascular diseases of the extremities. At the same time, abnormal blood accumulation in areas such as in the brain, abdomen or cysts can indicate cerebral or visceral hemorrhage or malignant tumors. Continuous monitoring can aid diagnosis of these conditions and help facilitate timely and potentially life-saving interventions.
The new sensor overcomes some significant limitations in existing methods of monitoring biomolecules. Magnetic resonance imaging (MRI) and X-ray-computed tomography rely on bulky equipment that can be hard to procure and usually only provide information on the immediate status of the molecule, which makes them unsuitable for long-term biomolecule monitoring.
“Continuous monitoring is critical for timely interventions to prevent life-threatening conditions from worsening quickly,” said a study co-author. “Wearable devices based on electrochemistry for biomolecules detection, not limited to hemoglobin, are good candidates for long-term wearable monitoring applications. However, the existing technologies only achieve the ability of skin-surface detection.”
The new, flexible, low form-factor wearable patch comfortably attaches to the skin, allowing for noninvasive long-term monitoring. It can perform three-dimensional mapping of hemoglobin with a submillimeter spatial resolution in deep tissues, down to centimeters below the skin, versus other wearable electrochemical devices that only sense the biomolecules on the skin surface. It can achieve high contrast to other tissues. Due to its optical selectivity, it can expand the range of detectable molecules, integrating different laser diodes with different wavelengths, along with its potential clinical applications.
The patch is equipped with arrays of laser diodes and piezoelectric transducers in its soft silicone polymer matrix. Laser diodes emit pulsed lasers into the tissues. Biomolecules in the tissue absorb the optical energy, and radiate acoustic waves into surrounding media.
“Piezoelectric transducers receive the acoustic waves, which are processed in an electrical system to reconstruct the spatial mapping of the wave-emitting biomolecules”, said a co-author of the study.
“With its low-power laser pulses, it is also much safer than X-ray techniques that have ionizing radiation”, said another author.
Based on its success so far, the team plans to further develop the device, including shrinking the backend controlling system to a portable-sized device for laser diode driving and data acquisition, greatly expanding its flexibility and potential clinical utility.
They also plan to explore the wearable’s potential for core temperature monitoring. “Because the photoacoustic signal amplitude is proportional to the temperature, we have demonstrated core temperature monitoring on ex-vivo experiments,” the senior author said. “However, validating the core temperature monitoring on the human body requires interventional calibration.”
They are continuing to work with physicians to pursue more potential clinical applications.
https://www.nature.com/articles/s41467-022-35455-3
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-photoacoustic-patch&filter=22
Wearable skin patch monitors hemoglobin in deep tissues
- 622 views
- Added
Latest News
Reconstructing brain connec…
By newseditor
Posted 29 May
Leishmania parasite manipul…
By newseditor
Posted 29 May
How apoE4 and complement fa…
By newseditor
Posted 28 May
Computational design of dyn…
By newseditor
Posted 28 May
Sphingosine-1-phosphate tra…
By newseditor
Posted 28 May
Other Top Stories
How immunity is sustained in aging
Read more
TLK protein inhibition activates the innate immune system
Read more
Connecting hormones we're born with to lifetime risk for immunologi…
Read more
Role of TNF in the development of colitis
Read more
How genetic variation changes the immune repertoire in multiple scl…
Read more
Protocols
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
TomoTwin: generalized 3D lo…
By newseditor
Posted 17 May
Optimization and validation…
By newseditor
Posted 16 May
Publications
A 360 view of the inflammas…
By newseditor
Posted 29 May
Exercise suppresses neuroin…
By newseditor
Posted 29 May
Activation, decommissioning…
By newseditor
Posted 29 May
NIH Music-Based Interventio…
By newseditor
Posted 29 May
Citrus fruits, vitamin D, a…
By newseditor
Posted 29 May
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar