Look deep inside the brain of someone with Alzheimer's disease, most forms of dementia or the concussion-related syndrome known as chronic traumatic encephalopathy (CTE) and you'll find a common suspected culprit: stringy, hairball-like tangles of a protein called tau.
Such conditions, collectively known as "tauopathies" strike scores of people across the globe, with Alzheimer's alone affecting six million people in the United States.
But more than a century after German psychiatrist Alois Alzheimer discovered tau tangles, scientists still have much to learn about them.
A study published in the journal Neuron, shows for the first time that tau aggregates gobble up RNA, or ribonucleic acid, inside cells and interfere with an integral mechanism called splicing, by which cells ultimately produce needed proteins.
"Understanding how tau leads to neurodegeneration is the crux of not just understanding Alzheimer's disease but also multiple other neurological diseases," said the senior author. "If we can understand what it does and how it goes bad in disease we can develop new therapies for conditions that now are largely untreatable."
"There is nothing we can do for these patients right now - no disease modifying-treatments for Alzheimer's or most of the other tauopathies," the lead author said, noting that 70% of neurodegenerative diseases are believed to be at least partially related to tau aggregates.
For the study, the researchers isolated tau aggregates from cell lines and from the brains of mice with an Alzheimer's-like condition. Then they used genetic sequencing techniques to determine what was inside.
They confirmed for the first time that tau aggregates contain RNA, or ribonucleic acid, a single-stranded molecule key for synthesizing proteins in cells. They identified what kind of RNA it is, specifically snRNA, or small nuclear RNA, and snoRNA, or small nucleolar RNA.
They also discovered that tau interacts with pieces of cellular machinery known as nuclear speckles, sequestering and displacing proteins inside them and disrupting a process called RNA splicing in which the cell weeds out unneeded material to generate new, healthy RNA.
The authors observed several nuclear speckle components, including SRRM2, mislocalize to cytosolic tau aggregates in cells, mouse brains, and brains of individuals with AD, frontotemporal dementia (FTD), and corticobasal degeneration (CBD). Consistent with these alterations, they saw the presence of tau aggregates is sufficient to alter pre-mRNA splicing.
"The tau aggregates appear to be sequestering splicing-related RNA and proteins, disrupting their normal function and impairing the cell's ability to make proteins," said the senior author.
Notably, scientists examining the brains of Alzheimer's patients after death have discovered evidence of splicing-related defects in cells.
The paper is the first in a series out of the lab to explore the mechanism of action by which tau aggregates gum up the works inside brain cells.
Already, several companies have clinical trials underway testing drugs that would do away with tau entirely in patients with neurodegenerative diseases. But that could potentially have unintended consequences, said the senior author.
"A big problem in the field is that no one really knows what tau does in healthy people and It likely has important functions when not in tangles," the author said.
By better understanding precisely what it does to harm and kill cells, the authors hope to bring a different approach to the table.
"The idea would be to intervene in the abnormal functions while preserving the normal functions of tau," the senior author said.
https://www.colorado.edu/today/2021/04/15/how-tangled-protein-kills-brain-cells-promotes-alzheimers
https://www.cell.com/neuron/fulltext/S0896-6273(21)00196-3
Tau aggregates contain RNA-protein assemblies that mislocalize nuclear speckle components
- 879 views
- Added
Edited
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Does keto diet work in long term?
Read more
Could resetting our internal clocks help control diabetes?
Read more
Long non-coding RNAs keep diabetes at bay
Read more
New path for reversing type-2 diabetes and liver fibrosis
Read more
DNA Misfolding in White Blood Cells Increases Risk for Type 1 Diabetes
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar