A compound developed by researchers that blocks glutamine metabolism can slow tumor growth, alter the tumor microenvironment and promote the production of durable and highly active anti-tumor T cells.
The drug, a "prodrug" version of the glutamine antagonist DON, was designed so that the active form of the drug is functional within the tumor. In theory, this compound could be used across a wide spectrum of cancer types, says the senior author and colleagues due to the critical role of glutamine in promoting the metabolism necessary for prodigious tumor growth.
Their study, published in Science, reveals surprising differences in the metabolic pathways fueling cancer cells and effector T cells, pathways that were thought previously to be very similar. These differences could be exploited as a "metabolic checkpoint" in treating cancer, the senior author says.
"By targeting glutamine metabolism, we were not only able to inhibit tumor growth and change the tumor microenvironment, but also alter the T cells in a way that we markedly enhanced immunotherapy for cancer," the author says.
Although glutamine metabolism is a component of all cells of the body, the DON prodrug selectively targeted tumor cells because they are the "hungriest" for glutamine, said the senior author. The authors tested the DON prodrug, dubbed JHU083, in mice models of colon cancer, lymphoma and melanoma.
"In the beginning, our thought was that if we could target tumor metabolism, we could achieve two goals: slow tumor growth and alter the tumor microenvironment," says the senior author. The tumor microenvironment -- the cells, blood vessels and nutrients in the vicinity of tumors -- is very hostile to the immune response because it is usually acidic, hypoxic and nutrient-depleted. "This immune shield that the tumor creates around itself is in a sense a direct result of tumor metabolism," the author says.
In mice, treatment with JHU083 led to a significant decrease in tumor growth and improved survival in many different cancer models, by derailing tumor cell metabolism and its effects on the tumor microenvironment, the research team found. In a number of the mice, treatment with JHU083 alone led to durable cures. These cures were facilitated because the metabolic therapy unleashed the natural anti-tumor immune response. When the researchers reinjected these cancer-free mice with new tumors, they found that almost all the mice rejected the new tumor, suggesting that the JHU083 treatment had produced a powerful immune memory to recognize and attack the new cancer.
They also treated the mice with JHU083 and an anti-PD-1 checkpoint inhibitor, a type of immunotherapy drug that removes restraints cancer cells place on immune cells. "Initially, we thought we would need to use the two therapies sequentially in order to avoid any potential impact of the metabolic therapy on the immunotherapy," says the author. "Remarkably, however, it turned out that the combined treatment worked best when we gave them simultaneously." Concurrent treatment with the drugs produced improved anti-tumor effects compared with anti-PD-1 therapy alone.
After analyzing and comparing gene expression in the treated tumor cells and a type of immune cell called effector T cells, the authors noted differences in gene expression related to metabolism, which allowed them to guess at how the T cell was fueling itself compared with the tumor.
They found some similarities, but fundamentally the metabolic programming of tumor cells and the effector T immune cells was quite different, and it is those differences the researchers exploited by giving the glutamine-blocking drug.
The differences allowed the effector T cells to respond to the glutamine blockage by producing long-lasting, highly effective tumor-infiltrating T cells that seemed to be invigorated rather than exhausted in the tumor microenvironment. "By blocking glutamine metabolism, we were making these cells more persistent, more like an immune memory cell," the author noted.
The group also demonstrated that treating the tumors with JHU083 enhanced the efficacy of adoptive cellular therapy, a type of immunotherapy in which immune T cells are collected and grown in large numbers in the laboratory before being given to patients to boost the immune response against cancer. These findings suggest that this new approach may also be used to enhance a promising type of adoptive cell therapy called CAR-T. In future studies, the authors want to examine how JHU083 combines with different types of immunotherapy to explore whether certain tumors can overcome the metabolic trap laid by JHU083.
Potentially, tumors that develop metabolic pathways to avoid the impacts of JHU083 could find themselves in a "blind alley," said the author. "By adding an additional metabolic antagonist, you could potentially get rid of the resistant tumors as well."
https://www.hopkinsmedicine.org/news/newsroom/news-releases/glutamine-blocking-drug-slows-tumor-growth-and-strengthens-anti-tumor-response
https://science.sciencemag.org/content/early/2019/11/06/science.aav2588
Glutamine-blocking drug slows tumor growth and strengthens anti-tumor response
- 356 views
- Added
Edited
Latest News
Stress in early life extends lifespan
Protein aggregates are structurally different in brain diseases!
Reactive oxygen species and plant root growth
Multiple mechanisms of widely-used diabetes drug metformin
Artificial neurons with electrical properties of biological neurons developed
Other Top Stories
Salt could be a key factor in allergic immune reactions
Activating tooth regeneration in mice
Simple bile acid blood test could tell risk of stillbirth
Predicting epileptic seizures few minutes in advance in brain metabolism deficient mouse model
The 'blue' in blueberries can help lower blood pressure
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts
Quantitative In Vivo Proteomics of Metformin Response in Liver Reveals AMPK-Dependent and -Indepe…
Quantitative In Vivo Proteomics of Metformin Response in Liver Reveals AMPK-Dependent and -Indepe…
Optimal solid state neurons
NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome
Presentations
Hypoxia Inducible Factor - 1 (HIF-1)
Intracellular Protein Degradation
Pathophysiology of Type 1 Diabetes
Plant Viruses
Regulation by changes in chromatin structure
Posters
AACC-2018-Infectious Disease
AACC-2018-Mass Spectrometry Applications
AACC-2018-Lipids/Lipoproteins
AACC-2018-Management
AACC-2018-Immunology-abstracts