Link between glucocorticoids and children's bone cancer found!

Link between glucocorticoids and children's bone cancer found!


Ewing sarcoma is a bone cancer that appears mainly in teenagers. Due to a single defective gene, once it spreads to distant organs it is hard to treat. Researchers have discovered molecular interactions underlying Ewing sarcomas and proposed a potential treatment, which has shown promise in a study in mice. These findings were published recently in Cell Reports.

The authors conducted research focusing on receptors for steroid hormones called glucocorticoids. These receptors are present in virtually all human cells, conveying hormonal messages related to stress, wakefulness and a host of other important functions. But sometimes glucocorticoid receptors stimulate malignant growth. They do this by moving to the cell nucleus, where they physically interact and bind with transcription factors - molecules that turn genes on or off. The researchers wanted to learn more about the role of these interactions in malignancy.

A highly sensitive protein interaction analysis suitable for living cells revealed previously unknown interactions: Once activated by hormones, glucocorticoid receptors were found to be binding in the cell nucleus to transcription factors of the E-twenty-six, or ETS family, forming together a physical complex. One of the transcription factors in the ETS family is known to drive the development of Ewing sarcoma; its gene fuses abnormally with another gene, creating an oncogene: a cancer-causing gene.

When the study turned up this link between the Ewing sarcoma oncogene and glucocorticoid receptors, the researchers set out to test a hypothesis: that these receptors boost the growth of Ewing sarcoma. A series of studies supplied evidence that this is indeed the case. Physical binding between glucocorticoid receptors and the protein made by this oncogene increased the growth and migration of Ewing sarcoma cells in a laboratory dish and gave an even stronger boost to the growth and spread of the sarcoma in laboratory mice.

The major medical significance of these findings is that they open the door to a new treatment option for Ewing sarcoma. When the researchers implanted human Ewing sarcoma cells into mice, the tumors grew much more slowly when the mice were treated with metyrapone, a drug that is approved for the treatment of adrenal insufficiency and works by reducing the synthesis of glucocorticoids. In other experiments, also in mice, another drug, mifepristone, which blocks the glucocorticoid receptor and is approved for other clinical applications, prevented the metastasis of Ewing sarcoma via a major cancer cell dissemination route, from bone to the lungs. In contrast, when the researchers increased the activity of glucocorticoid receptors, the sarcomas grew and spread much faster.

Furthermore, the researchers performed a genetic analysis of tumor samples from patients with Ewing sarcoma and identified seven genes regulated by the glucocorticoid receptors that were expressed in higher-than-normal levels in patients with particularly lethal tumors. These genes might serve as a genetic signature enabling a selection of patients for treatment: Those with upregulated "signature" genes are especially likely to benefit from treatment aimed at neutralizing glucocorticoid receptors. The signature genes may also help predict the course of the disease: Their increased expression may signal a poor prognosis; reduced expression, on the other hand, may signal better chances for survival.

If research in human patients confirms the study's findings, they may offer new hope to youngsters with this malignancy, especially in cases when the sarcoma has metastasized beyond the bone.

"Our findings provide the basis for a personalized approach to the treatment of Ewing sarcoma," the author says. The fact that the study made use of drugs that have already been approved for other uses should facilitate the implementation of this approach.

https://wis-wander.weizmann.ac.il/life-sciences/new-route-blocking-children’s-bone-cancer

https://www.cell.com/cell-reports/fulltext/S2211-1247(19)31150-7

http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fets-proteins-bind-with&filter=22

Edited

Rating

Unrated
Rating:

Critical error – bailing out

This is an error that has been elevated to critical error status because it occurred during the primary error mechanism reporting system itself (possibly due to it occuring within the standard output framework). It may be masking a secondary error that occurred before this, but was never output - if so, it is likely strongly related to this one, thus fixing this will fix the other.
Unfortunately a query has failed [DELETE FROM ocp_stats WHERE date_and_time<1704843961] [Table 'ocpo1.ocp_stats' doesn't exist] (version: 9.0.20, PHP version: 5.6.40, URL: /site/index.php?page=news&type=view&id=cancer%2Flink-between&wide_print=1&max=1000)

Details here are intended only for the website/system-administrator, not for regular website users.
» If you are a regular website user, please let the website staff deal with this problem.

Depending on the error, and only if the website installation finished, you may need to edit the installation options (the info.php file).

ocProducts maintains full documentation for all procedures and tools. These may be found on the ocPortal website. If you are unable to easily solve this problem, we may be contacted from our website and can help resolve it for you.


ocPortal is a CMS for building websites, developed by ocProducts.