Genes are switched on in the human embryo from the get-go

The finding that some genes are active from the get-go challenges the textbook view that genes don't become active in human embryos until they are made up of four-to-eight cells, two or three days after fertilisation.

The newly discovered activity begins at the one-cell stage – far sooner than previously thought – promising to change the way we think about our developmental origins. The research was published in Cell Stem Cell.

Using a method called RNA-sequencing, the team applied precision analysis to individual human eggs and one-cell embryos to make a detailed inventory of tell-tale products of gene activity, called RNA transcripts. It revealed that hundreds of genes awaken in human one-cell embryos. Because the gene activity starts small, previous techniques had not been sensitive enough to detect it. But state-of-the art RNA-sequencing used in this study was able to reveal even small changes.

"This is the first good look at the beginning of a biological process that we all go through – the transit through the one-cell embryo stage," said the senior author. "Without genome awakening, development fails, so it's a fundamental step."

The team found that many genes activated in one-cell embryos remain switched on until the four-to-eight cell stage, at which point they are switched off.

“It looks as if there is a sort of genetic shift-work in early embryos: the first shift starts soon after fertilisation, in one-cell embryos, and a second shift takes over at the eight-cell stage,” said the author.

At the moment of human fertilisation, sperm and egg genomes – the collection of all of their genes – are inactive: the sperm and egg rely on transcripts produced when they were being formed for instructions that regulate their characteristics.

Transcripts provide essential instructions in all cells, and embryo cells are no exception. This means that it is essential for parental (sperm and egg) genomes to awaken in the new embryo. But when and how does this happen?

Understanding the process of genome awakening is important: it is a key piece of the jigsaw of development that promises a better understanding of disease, inheritance and infertility. The scientists found some activated genes that might be expected to play roles in early embryos, but the roles of others were unknown and could point to embryonic events that we don't yet understand.

The team's findings also shine a light on how the genes are activated. "Although the trigger for activation is thought to come from the egg, it's not known how; now we know which genes are involved, we can locate their addresses and use molecular techniques to find out," said the author.

Remarkably, candidates that might trigger gene activation include factors usually associated with cancer, such as some well-known oncogenes. This led the researchers to speculate that the natural, healthy role of factors that are known to misbehave in cancer, is to awaken genes in one-cell embryos. If this proves to be correct, the team’s findings could illuminate events that initiate cancer, providing new diagnostic and preventive opportunities.

The findings also have clinical implications for the inheritance of acquired traits, such as obesity: parents who gain weight seem to pass the trait to their kids. It is not known how such acquired traits are transmitted, but altering gene activation after fertilisation is a possible mechanism.

The team also looked at unhealthy one-cell embryos that do not go on to develop, and found that many of their genes fail to activate. Abnormal embryos have been used to evaluate methods of human heritable genome editing, but the new findings suggest they may be inappropriate as a reliable test system.



Critical error – bailing out

This is an error that has been elevated to critical error status because it occurred during the primary error mechanism reporting system itself (possibly due to it occuring within the standard output framework). It may be masking a secondary error that occurred before this, but was never output - if so, it is likely strongly related to this one, thus fixing this will fix the other.
Unfortunately a query has failed [DELETE FROM ocp_stats WHERE date_and_time<1702476270] [Table 'ocpo1.ocp_stats' doesn't exist] (version: 9.0.20, PHP version: 5.6.40, URL: /site/index.php?page=news&type=view&id=developmental-biology%2Fgenes-are-switched-on)

Details here are intended only for the website/system-administrator, not for regular website users.
» If you are a regular website user, please let the website staff deal with this problem.

Depending on the error, and only if the website installation finished, you may need to edit the installation options (the info.php file).

ocProducts maintains full documentation for all procedures and tools. These may be found on the ocPortal website. If you are unable to easily solve this problem, we may be contacted from our website and can help resolve it for you.

ocPortal is a CMS for building websites, developed by ocProducts.