The early stages of embryonic development contain many of life’s mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments.
Researchers have characterised a critical time in mammalian embryonic development using powerful and innovative imaging techniques, with their work published in Nature Communications.
“Just a few days into the journey of embryogenesis, when turning into 16 cells, the embryo must make its first difficult decision - which of its cells will give rise to the embryo or will become extra-embryonic tissue, for example, placenta,” explained the lead researcher.
In this study, the research team has discovered how this decision-making process is facilitated by capturing the inner organisation of single cells of the early embryo.
“Ribonucleic acid, RNA, plays a key role here. At the 16-cell stage, the different subtypes of RNA, named rRNAs, mRNAs and tRNAs, are sorted to the two ends of a cell called apical and basal side. The distribution of RNA subtypes determines what the next generation of cells of the embryo will become,” the author said.
Interestingly, while most mRNAs and tRNAs remain parked at the apical side, most rRNA molecules travel down to the basal side hitchhiking on organelles called lysosomes. Even though retaining less overall RNA content, the apical sides of outer 16-cell stage cells contain the full collection of RNAs and other factors required for protein production.
The crowded basal side, however, is occupied predominantly with rRNAs. Daughter cells obtaining the more active protein factories of the apical side, are more transformable and specialise into the future placenta. The daughter cells which retain their potential to still become any type of cell of the adult organism, called pluripotency, receive the less translationally active bulk of rRNA.
This decision and many like it, which is known as cell fate, are important in development as it determines how these early cells reach their final cell type, such as skin cells, heart muscle cells and brain cells. For regenerative medicine, being able to orchestrate cell fate opens up the capacity to generate new stem cell-based treatments for a number of diseases and conditions.
“As in real life, cells can influence the direction of their own future by getting organised early. Our research may open new ways to predict and direct cell fate decisions,” the author said.
https://www.nature.com/articles/s41467-023-38436-2
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fapicobasal-rna&filter=22
RNA-guided mechanisms driving cell fate
- 1,000 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Dietary fat good or bad?
Read more
Hepatocyte-macrophage shuttle protects against liver fibrosis
Read more
Head injuries may lead to serious brain diseases
Read more
Putative epigenetic signatures of chronic undernutrition
Read more
Repeated infection creates innate immune memory on DNA
The innate immune system may be able to be trained to react to viral infections more efficiently by repeated exposure to anti-viral signaling molecules.
Mammalian cells seem to be able to memorize anti-viral stimulation at the level of DNA-packaging molecules, enabling faster and greater activation of anti-viral genes in subsequent stimulations, according to a study published in PNAS. The senior…
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar