The enzyme Gemin3 was identified as the molecular 'bridge' between genes whose mutation or disruption causes amyotrophic lateral sclerosis (ALS), according to a new study in Nature's Scientific Reports.
ALS robs patients of their ability to walk, eat or breathe. The late-onset neurodegenerative disease destroys motor neurons, the long nerve cells in the brain and spinal cord that tell the muscles what to do. Signals from these nerves gradually stop reaching the muscles, which weaken and die. There is no cure for ALS, and, eventually, the disease is fatal.
Genetics contributes significantly to the development of ALS. Mutations in any of an ever-increasing list of genes have been identified to cause ALS with TDP-43, FUS and SOD1 featuring at the top considering that together they are responsible for a large percentage of ALS cases with a family history.
"We have been perplexed by the seemingly diverse functions of genes linked to ALS. The lack of commonality complicates the process for developing treatments that are broadly beneficial," said the study's lead researcher.
Through investigations on fruit flies, the research team were able to identify a gene whose mild perturbation was enough to trigger worsening of ALS symptoms caused by disruption of TDP-43, FUS or SOD1. The gene, named Gemin3, produces an enzyme offering researchers the possibility of tuning its function to ameliorate ALS symptoms.
Gemin3 has long been known for its alliance with the survival motor neuron (SMN) protein. A deficiency of SMN causes spinal muscular atrophy (SMA), a motor neuron disease that strikes infants. Gemin3's activity is crucial for building the splicing machinery which edits the cell's genetic instructions. Earlier discoveries of the research group linked Gemin3 to several key players in this delicate process.
Disruption of either TDP-43 or FUS enhance defects associated with Gemin3 loss-of-function. Gemin3-associated neuromuscular junction overgrowth was however suppressed. Sod1 depletion had a modifying effect in late adulthood.
Authors also show that Gemin3 self-interacts and Gem3ΔN, a helicase domain deletion mutant, retains the ability to interact with its wild-type counterpart. Importantly, mutant:wild-type dimers are favoured more than wild-type:wild-type dimers.
In addition to reinforcing the link between SMA and ALS, further exploration of mechanistic overlaps is now possible in a genetically tractable model organism. Notably, Gemin3 can be elevated to a candidate for modifying motor neuron degeneration.
Right now, the research team is determining whether targeting multiple players in the pathway uncovered by Gemin3 can ameliorate ALS, a result that can potentially pave the way for development of treatments that are effective to a broad swathe of ALS patients.
https://www.um.edu.mt/newspoint/news/features/2020/01/scientistsatumdiscoverlinkbetweenalsgenes
https://www.nature.com/articles/s41598-019-53508-4
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fsmn-complex-member&filter=22
Link between ALS genes identified!
- 3,481 views
- Added
Edited
Latest News
Damage to brain's 'control…
By newseditor
Posted 14 Oct
Special immune cells stop m…
By newseditor
Posted 14 Oct
New mutation linked to earl…
By newseditor
Posted 08 Oct
Mechanism of GSDMD pore for…
By newseditor
Posted 08 Oct
How are pronouns processed…
By newseditor
Posted 07 Oct
Other Top Stories
Coloring specific genes and cells in organoids using CRISPR-HOT
Read more
A sensor to detect pH changes in the brain!
Read more
Aspiration assisted printing spheroids for drug discovery
Read more
A new nanoscale 4D printing technique
Read more
Novel blood test points to risk of weight gain and diabetes
Read more
Protocols
Mapping protein-DNA interac…
By newseditor
Posted 09 Oct
Use of synthetic circular R…
By newseditor
Posted 06 Oct
The gut-brain axis in depre…
By newseditor
Posted 04 Oct
Droplet-based functional CR…
By newseditor
Posted 03 Oct
Multi-peptide characterizat…
By newseditor
Posted 24 Sep
Publications
Quantitative susceptibility…
By newseditor
Posted 14 Oct
BCAS1-positive oligodendroc…
By newseditor
Posted 14 Oct
The transcription regulator…
By newseditor
Posted 14 Oct
Does glial lipid dysregulat…
By newseditor
Posted 09 Oct
The Nobel Prize in Chemistr…
By newseditor
Posted 09 Oct
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar