A new study challenges prevailing understandings of genes as immutable features of biology that are fixed at conception.
Previous research has shown that socioeconomic status (SES) is a powerful determinant of human health and disease, and social inequality is a ubiquitous stressor for human populations globally. Lower educational attainment and/or income predict increased risk for heart disease, diabetes, many cancers and infectious diseases, for example. Furthermore, lower SES is associated with physiological processes that contribute to the development of disease, including chronic inflammation, insulin resistance and cortisol dysregulation.
In this study, researchers found evidence that poverty can become embedded across wide swaths of the genome. They discovered that lower socioeconomic status is associated with levels of DNA methylation (DNAm) -- a key epigenetic mark that has the potential to shape gene expression -- at more than 2,500 sites, across more than 1,500 genes.
In other words, poverty leaves a mark on nearly 10 percent of the genes in the genome.
Lead author said this is significant for two reasons.
"First, we have known for a long time that SES is a powerful determinant of health, but the underlying mechanisms through which our bodies 'remember' the experiences of poverty are not known," said another author.
"Our findings suggest that DNA methylation may play an important role, and the wide scope of the associations between SES and DNAm is consistent with the wide range of biological systems and health outcomes we know to be shaped by SES."
Secondly, said the author, also a faculty fellow at Northwestern's Institute for Policy Research, experiences over the course of development become embodied in the genome, to literally shape its structure and function.
"There is no nature vs. nurture," the author adds.
The senior author said he was surprised to find so many associations between socioeconomic status and DNA methylation, across such a large number of genes.
"This pattern highlights a potential mechanism through which poverty can have a lasting impact on a wide range of physiological systems and processes," the author said.
Follow-up studies will be needed to determine the health consequences of differential methylation at the sites the researchers identified, but many of the genes are associated with processes related to immune responses to infection, skeletal development and development of the nervous system.
"These are the areas we'll be focusing on to determine if DNA methylation is indeed an important mechanism through which socioeconomic status can leave a lasting molecular imprint on the body, with implications for health later in life," the senior author said.
https://news.northwestern.edu/stories/2019/04/poverty-leaves-a-mark-on-our-genes/
https://onlinelibrary.wiley.com/doi/abs/10.1002/ajpa.23800
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Body clock connects and co-ordinates genetic clock among organs and…
Read more
Blocking RNA silencing protein in liver to prevent obesity and diab…
Read more
A mere drop of blood makes skin cells line up
Read more
Mannose changes gut microbiome and prevents obesity
Read more
Diabetes may begin more than 20 years before diagnosis
Read more
Protocols
D-LMBmap: a fully automated…
By newseditor
Posted 30 Sep
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Publications
Alteration in the chromatin…
By newseditor
Posted 30 Sep
Identification of genes req…
By newseditor
Posted 29 Sep
Mitochondrial degradation:…
By newseditor
Posted 29 Sep
The promise of new anti-obe…
By newseditor
Posted 29 Sep
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar