Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.
In a paper, published in the journal Cell researchers identified exosomes -- extremely small vesicles or sacs secreted from most cell types -- as the missing link.
"The actions induced by exosomes as they move between tissues are likely to be an underlying cause of intercellular communication causing metabolic derangements of diabetes," said senior author of the paper. "By fluorescently labeling cells, we could see exosomes and the microRNA they carry moving from adipose (fat) tissue through the blood and infiltrating muscle and liver tissues."
During chronic inflammation, the primary tissue to become inflamed is adipose. Forty percent of adipose tissue in obesity is comprised of macrophages -- specialized immune cells that promote tissue inflammation. Macrophages in turn create and secrete exosomes.
When exosomes get into other tissues, they use the microRNA (miRNA) they carry to induce actions in the recipient cells. The macrophage-secreted miRNAs are on the hunt for messenger RNAs. When the miRNA finds a target in RNA, it binds to it, rendering the messenger RNA inactive. The protein that would have been encoded by the messenger RNA is no longer made. Thus, the miRNAs are a way to inhibit the production of key proteins.
The team took macrophages found in adipose tissue of obese mice and harvested their exosomes. Lean, healthy mouse models were treated with these "obese" exosomes and once-normal mice began exhibiting obesity-induced insulin resistance despite not being overweight.
When reversing the process, the team found that they could restore insulin sensitivity to obese mice by treating them with exosomes from lean mice. The obese mice remained overweight, but were metabolically healthy.
Similarly, during an in vitro study, when human liver and fat cells were treated with "obese" exosomes, these cells became insulin resistant. Conversely, when they were treated with "lean" macrophage exosomes, they became highly sensitive to insulin.
"This is a key mechanism of how diabetes works," said the senior author. "This is important because it pins the pathophysiology of the disease in inflamed adipose tissue macrophages which are making these exosomes. If we can find out which of the microRNAs in those exosomes cause the phenotype of diabetes, we can find drug targets."
The senior author estimates there are probably several hundred miRNAs in exosomes, but only 20 to 30 are key. Determining which miRNAs to target will require more research, but the team has already found one likely suspect: microRNA-155, which inhibits a well-known metabolic protein called PPARγ. The researchers note that there are existing clinically effective anti-diabetic drugs that target this protein, but they trigger side effects deemed not acceptable in clinical practice.
"Still, there are a number of microRNAs that we hope will lead to new, highly druggable targets resulting in new insulin-sensitizing therapeutics," said the senior author. "We can obtain exosomes from blood -- known as a liquid biopsy -- to sequence all of these microRNAs."
By sequencing exosomes, researchers can obtain genetic signatures that could lead to biomarkers for this disease, similar to how liquid biopsies are used to find drugs that will be effective in cancer treatment. The team hopes that biomarkers for diabetes will one day be used to determine if a person is at high risk of diabetes in the next year or never. Biomarkers may also predict which patients will respond to specific therapies.
http://ucsdnews.ucsd.edu/pressrelease/exosomes_are_the_missing_link_to_insulin_resistance_in_diabetes
http://www.cell.com/cell/fulltext/S0092-8674(17)30993-5
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Stronger artificial muscles with powerful pulling force
Read more
Synthesis of JP-10 Superfuel with Furfuryl Alcohol
Read more
Printing magnetic liquid droplets
Read more
SLAP microscope to capture neurotransmitter release in vivo
Read more
Monitoring the differentiation of bone marrow cells
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar