High-energy heavy ion beam treatments for cardiac arrhythmia

High-energy heavy ion beam treatments for cardiac arrhythmia
 

Cardiac arrhythmia can lead to permanent damage as a result of stroke, or it may cause sudden heart failure. In forms of arrhythmia like atrial fibrillation or ventricular tachycardia, the heart departs from the regular rhythm set by a natural pacemaker, the sinoatrial node. This type of arrhythmia is often treated with drugs or with a "catheter ablation," in which catheters are guided through blood vessels to the heart, and certain tissue there is selectively destroyed.

Based on this principle, ions from the particle accelerator could one day be used to perform a treatment without catheters. Scientists have been able to show that high-energy carbon ions can be used in a non-invasive procedure to make specific changes to cardiac tissue that prevent the transmission of the electrical signal.

This procedure using carbon ions has now been studied for the first time in a feasibility study by scientists The researchers have published their results in the journal Scientific Reports from the publishers of Nature.

After prior tests on cardiac cell cultures and beating heart preparations yielded promising results, the scientists developed an animal study. "The new method is a big step into the future, because for the first time, it allows us to perform this treatment with pinpoint accuracy but without any catheters at all," says one of the authors of the study. "The study showed that the method can be successfully used to change cardiac tissue in such a way as to permanently interrupt the propagation of disruptive impulses. Further detailed studies are needed, however, before the method can start to benefit patients," says another author.

The irradiation of tissue with carbon ions promises to be gentler and potentially also more effective than treatment with catheters. When the method is technically mature, the procedure will take only a few minutes, in contrast to the sometimes hours-long catheter operations.

One crucial advantage is that the ions can penetrate to any desired depth. By contrast, since the left ventricular wall of the heart is especially thick, it is often not possible to effectively destroy tissue there with catheters, although this is precisely the spot at which patients suffering from severe forms of ventricular tachycardia must be treated.

In their study, the scientists were able to rely on many technologies originally developed for cancer treatment with scanned ions. This form of treatment has now become well established and has been used in thousands of patients worldwide.


https://www.gsi.de/en/start/news/details/2017/01/19/ion_treatments_for_cardiac_arrhythmia.htm

http://www.nature.com/articles/srep38895

Edited

Rating

Unrated
Rating: