Mapping senescent cells throughout the human lifespan


Multiple researchers are taking part in an ambitious research program spanning several top research institutions to study senescent cells. Senescent cells (SnCs) stop dividing in response to stressors and seemingly have a role to play in human health and the aging process. Recent research with mice suggests that clearing senescent cells delays the onset of age-related dysfunction and disease as well as all-cause mortality. 

Could therapies that remove senescent cells—called senotherapeutics—also improve the health of humans as we age? Answering this question and more has the potential to significantly advance human health, and the National Institutes of Health (NIH) has launched an extensive research initiative for this very purpose. 

The SenNet Consortium, a collaboration of institutions from throughout the United States, was initially launched in 2021 with centers established to gather and analyze human data. The researchers will collect and analyze 18 tissues from healthy humans across lifespan to discern the full scope of senescent cells and how they may contribute to the aging process. The work of the SenNet Consortium was recently presented in a paper published in Nature Aging.

The team will draw upon its genetically diverse mouse resources, including Diversity Outbred mouse populations, to model a range of molecular senescence traits, as well as inbred mice specifically engineered to help visualize senescent cell subsets. 

State-of-the-art methods will be applied to identify, define and map SnCs in 18 human tissues. A common coordinate framework will integrate data to create four-dimensional SnC atlases. Other key SenNet deliverables include innovative tools and technologies to detect SnCs, new SnC biomarkers and extensive public multi-omics datasets.

https://www.nature.com/articles/s43587-022-00326-5

http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fnih-sennet-consortium&filter=22

Rating

Unrated
Rating: