Scientists have genetically engineered a mouse that does not become addicted to cocaine, adding to the evidence that habitual drug use is more a matter of genetics and biochemistry than just poor judgment.
The mice they created had higher levels of a protein called cadherin, which helps bind cells together. In the brain, cadherin helps strengthen synapses between neurons - the gaps that electrical impulses must traverse to bring about any action or function controlled by the brain, whether it's breathing, walking, learning a new task or recalling a memory.
Learning - including learning about the pleasure induced by a stimulant drug - requires a strengthening of certain synapses. So researchers thought that extra cadherin in the reward circuit would make their mice more prone to cocaine addiction.
But they found the opposite to be true, as they explain in an article published in Nature Neuroscience.
Researchers injected cocaine into mice over a number of days and immediately placed in a distinctly decorated compartment in a three-room cage, so that they would associate the drug with that compartment. After several days of receiving cocaine this way, the mice were put into the cage and allowed to spend time in any compartments they preferred. The normal mice almost always gravitated to the cocaine-associated compartment, while the mice with extra cadherin spent half as much time there - indicating that these mice hadn't formed strong memories of the drug.
To understand that unexpected result, researchers analyzed the brain tissue of the genetically engineered mice.
They found that extra cadherin prevents a type of neurochemical receptor from migrating from the cell's interior to the synaptic membrane. Without that receptor in place, it's difficult for a neuron to receive a signal from adjoining neurons. So the synapses don't strengthen and the pleasurable memory does not "stick."
"Through genetic engineering, we hard-wired in place the synapses in the reward circuits of these mice," says graduate. "By preventing the synapses from strengthening, we prevented the mutant mice from 'learning' the memory of cocaine, and thus prevented them from becoming addicted."
Their finding provides an explanation for previous studies showing that people with substance use problems tend to have more genetic mutations associated with cadherin and cell adhesion. As studies such as this one illuminate the biochemical underpinnings of addiction, it could lead to greater confidence in predicting who is more vulnerable to drug abuse - and enable people to act on that knowledge.
Unfortunately, finding a way of augmenting cadherin as a way of resisting addiction in humans is fraught with pitfalls. In many cases, it's important to strengthen synapses - even in the reward circuit of the brain.
"For normal learning, we need to be able to both weaken and strengthen synapses," the senior author says. "That plasticity allows for the pruning of some neural pathways and the formation of others, enabling the brain to adapt and to learn. Ideally, we would need to find a molecule that blocks formation of a memory of a drug-induced high, while not interfering with the ability to remember important things."
http://www.med.ubc.ca/ubc-scientists-create-a-mouse-that-resists-cocaines-lure/
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4503.html
Mouse that resists cocaine's lure created!
- 1,584 views
- Added
Edited
Latest News
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Leveraging CRISPR to target…
By newseditor
Posted 30 Nov
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
A key protein for healthy a…
By newseditor
Posted 29 Nov
Connections between neuroin…
By newseditor
Posted 29 Nov
Other Top Stories
Viewing protein condensate formation
Read more
Regulation of APOE and CLU levels by the Alzheimer's disease risk g…
Read more
How immune cells contribute to Alzheimer's disease
Read more
Cause of restricted blood flow to the brain in vascular dementia
Read more
Cystinosis shares mechanism with cystic fibrosis
Read more
Protocols
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
The Brainbox–a tool to faci…
By newseditor
Posted 24 Nov
Publications
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
HSP47 levels determine the…
By newseditor
Posted 30 Nov
Targeting the non-coding ge…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar