A multidisciplinary study characterized a novel gene, known as FIBCD1, to be likely causative of a new and rare neurodevelopmental disorder. Using data from two young patients with neurological symptoms, the researchers from both groups found evidence of a novel function for the FIBCD1 gene in the brain, and a potentially pivotal role in diseases such as autism, ADHD, schizophrenia, and neurodegenerative disorders including Alzheimer’s. The study makes an important contribution to the understanding of the extracellular matrix in the brain and its associated neurological diseases.
The extracellular matrix (ECM) is the tissue in the brain that surrounds cells in a meshwork-like manner to support and instruct brain function in that respective region. The ECM provides stability to brain cells to enable proper function, including long-term memory storage and makes up around a fifth of the brain volume. Until now, few cellular receptors for ECM signaling have been identified, but no association with a congenital neurological disease was made.
For the first time, researchers from two groups have characterized FIBCD1, to be a receptor of the ECM ‘sugar’ components and linked it to a rare genetic neurological disease. “Until now, we were only aware of FIBCD1 in an immunological context, and it had never been studied in the brain or in connection with our central nervous system function. FIBCD1 is highly expressed in the brain, and it binds to glycosaminoglycans, sugar molecules. Since the brain ECM consists predominantly glycosaminoglycans, we theorized that the receptor must contribute to brain function through ECM binding and/or signaling,” explains the principal investigator of the study.
First authors used knockdown fly and knockout mouse models, as well as a series of in silico and in vitro experiments, to demonstrate that FIBCD1 is indeed a receptor for ECM components in the brain. Their work confirmed that the absence of FIBCD1 can lead to nervous system disorders that affect behavior and cellular dysfunction in animal models.
“This allowed us to conclude that deleterious variants in FIBCD1 could also cause neurological disorders in humans,” the authors explained. This conclusion is also supported by the data from two young patients with neurodevelopmental symptoms, one from the United States and one from China, for whom no diagnosis could be made prior to characterization of FIBCD1’s expression and function in brain neurons. Both patients suffer from a variety of devastating symptoms primarily affecting their central nervous system, including autism spectrum disorder and attention deficit hyperactivity disorder (ADHD), delayed developmental milestones, language impairments, and structural brain anomalies. In both patients, a mutation or variant in FIBCD1 was identified, thereby establishing an important diagnostic milestone.
“We were already able to see in the animal models that the inactivation of FIBCD1 leads to massive neuronal functional perturbance,” the senior author explains. “In the affected patients, we determined that in both cases, the FIBCD1 variants identified are functionless – the binding to sugars does not work. We have therefore determined that this might be the possible underlining pathological mechanism in the disease of the patients.
” Despite this fact, the symptoms of the two patients were remarkably different: while one of the patients had structural abnormalities in the brain, the other patient did not. “To be able to make a more concrete determination about the function of FIBCD1 in the human central nervous system, and what it can trigger if mutated, a much larger study cohort is needed,” the author added.
The study represents an enormous scientific milestone in several ways: on one hand, the identification and characterization of FIBCD1 in the brain has made an important contribution to our understanding of the ECM. On the other hand, it exemplifies the considerable level of collaboration that is needed to research rare diseases: a total of 29 experts from 24 institutions across 7 different countries collaborated to identify a new gene, FIBCD1, which was found to be likely responsible for neurodevelopmental symptoms in two unrelated patients from different countries.
“The diagnosis of patients with rare diseases is not only of enormous importance to the affected individuals themselves. It also crucially contributes to a better understanding of the molecular connections in our bodies, the functions of our genes, and thus to the development of better therapies for many more common diseases,” says the author.
https://cemm.at/news/n/receptor-fibcd1-newly-identified-in-neuro-developmental-disorders
https://www.embopress.org/doi/full/10.15252/emmm.202215829
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Ffibcd1-is-an-endocytic&filter=22
Receptor FIBCD1 newly identified in neuro-developmental disorders
- 1,716 views
- Added
Latest News
Repairing nerve cells after…
By newseditor
Posted 30 Nov
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Leveraging CRISPR to target…
By newseditor
Posted 30 Nov
Multi-chamber heart organoi…
By newseditor
Posted 29 Nov
A key protein for healthy a…
By newseditor
Posted 29 Nov
Other Top Stories
Rubbing sodium in a wound
Read more
How estrogen receptor drives the pathogenesis of endometriosis
Read more
Unraveling signaling pathway in Crohn's disease
Read more
Common immune evasion strategy by bacteria
Read more
Transcriptional regulation interferon in macrophages
Read more
Protocols
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
Publications
Pleiotrophin ameliorates ag…
By newseditor
Posted 30 Nov
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar