Among the barriers to malaria eradication are asymptomatic carriers who serve as parasite reservoirs and a lack of highly sensitive diagnostic methods suitable for use in resource-limited settings. Sensitive diagnostic methods are also needed for species of malaria parasites other than Plasmodium falciparum.
The researchers developed a CRISPR-based diagnostic method to detect four species of the malarial parasite Plasmodium. The test, which uses a nucleic acid detection platform called SHERLOCK, begins with a 10-minute parasite extraction step, followed by a 60-minute species-specific detection process with readout by fluorescence or on a lateral flow strip.
The authors report that the process is optimized for field conditions and resource-limited settings, with a cost of around $0.61 per test. The reaction materials are freeze-dried into a pellet that can be rehydrated, without the need for refrigeration.
Additionally, the authors note that the P. falciparum test is capable of detecting below two parasites per microliter of blood—a threshold smaller than the World Health Organization’s recommended limit of detection for molecular testing.
According to the authors, the test enables rapid, low-cost, sensitive diagnosis of symptomatic and asymptomatic malaria carriers, particularly carriers of nonfalciparum parasite species.
https://www.pnas.org/content/early/2020/09/15/2010196117
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fultrasensitive-crispr&filter=22
CRISPR-based malaria test
- 715 views
- Added
Edited
Latest News
Detecting gut microbes that activate immune cells
Shell microelectrode arrays (MEAs) for brain organoids
Why heat makes us sleepy
Nasal spray peptide can reduce seizure activity, protect neurons in Alzheimer's
How faulty metabolism triggers adrenal cancer
Other Top Stories
Online COVID-19 mortality risk calculator could help determine who should get vaccines first
High frequency oscillations to communicate between various brain regions
CAPTUREing Whole-Body 3D movements
AI to optimize diffusion MRI-based fiber tracking of brain connectome
New AI-designed serotonin sensor
Protocols
Simultaneous recording of neuronal and vascular activity in the rodent brain using fiber- photom…
VDJdb in the pandemic era: a compendium of T cell receptors specifc for SARS-CoV-2
A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mecha…
An improved organotypic cell culture system to study tissue-resident macrophages ex vivo
Protocol for spike-triggered closed-loop auditory stimulation during sleep in patients with epilepsy
Publications
Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communicat…
Systemic inflammation after stroke: implications for post-stroke comorbidities
Systemic IgG repertoire as a biomarker for translocating gut microbiota members
Mitochondrial microproteins link metabolic cues to respiratory chain biogenesis
Shell microelectrode arrays (MEAs) for brain organoids
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER