Some species of gut-dwelling bacteria activate nerves in the gut to promote the desire to exercise, according to a study in mice. The study was published in Nature, and reveals the gut-to-brain pathway that explains why some bacteria boost exercise performance.
In the study, the researchers found that differences in running performance within a large group of lab mice were largely attributable to the presence of certain gut bacterial species in the higher-performing animals. The researchers traced this effect to small molecules called metabolites that the bacteria produce—metabolites that stimulate sensory nerves in the gut to enhance activity in a motivation-controlling brain region during exercise.
“If we can confirm the presence of a similar pathway in humans, it could offer an effective way to boost people’s levels of exercise to improve public health generally,” said study senior author.
The researchers set up the study to search broadly for factors that determine exercise performance. They recorded the genome sequences, gut bacterial species, bloodstream metabolites, and other data for genetically diverse mice. They then measured the amount of daily voluntary wheel running the animals did, as well as their endurance.
The researchers analyzed these data using machine learning, seeking attributes of the mice that could best explain the animals’ sizeable inter-individual differences in running performance. They were surprised to find that genetics seemed to account for only a small portion of these performance differences—whereas differences in gut bacterial populations appeared to be substantially more important. In fact, they observed that giving mice broad-spectrum antibiotics to get rid of their gut bacteria reduced the mice’s running performance by about half.
Ultimately, in a years-long process of scientific detective work involving more than a dozen separate laboratories, the researchers found that two bacterial species closely tied to better performance, Eubacterium rectale and Coprococcus eutactus, produce metabolites known as fatty acid amides (FAAs). The latter stimulate receptors called CB1 endocannabinoid receptors on gut-embedded sensory nerves, which connect to the brain via the spine. The stimulation of these CB1 receptor-studded nerves causes an increase in levels of the neurotransmitter dopamine during exercise, in a brain region called the ventral striatum.
The striatum is a critical node in the brain’s reward and motivation network. The researchers concluded that the extra dopamine in this region during exercise boosts performance by reinforcing the desire to exercise.
“This gut-to-brain motivation pathway might have evolved to connect nutrient availability and the state of the gut bacterial population to the readiness to engage in prolonged physical activity,” said a study co-author. “This line of research could develop into a whole new branch of exercise physiology.”
The findings open up many new avenues of scientific investigation. For example, there was evidence from the experiments that the better-performing mice experienced a more intense “runner’s high”—measured in this case by a reduction in pain sensitivity—hinting that this well-known phenomenon is also at least partly controlled by gut bacteria. The team now plans further studies to confirm the existence of this gut-to-brain pathway in humans.
Apart from possibly offering cheap, safe, diet-based ways of getting ordinary people running and optimizing elite athletes’ performance, he added, the exploration of this pathway might also yield easier methods for modifying motivation and mood in settings such as addiction and depression.
https://www.nature.com/articles/s41586-022-05525-z
Gut microbes can boost the motivation to exercise
- 893 views
- Added
Latest News
Why frequent cannabis users…
By newseditor
Posted 02 Jun
Induction of fetal meiotic…
By newseditor
Posted 01 Jun
Skin cancer rewires its ene…
By newseditor
Posted 01 Jun
Running throughout middle a…
By newseditor
Posted 01 Jun
Type 2 diabetes drug could…
By newseditor
Posted 01 Jun
Other Top Stories
Disrupting protein-protein interaction to treat heart failure
Read more
An inhibitor to regulate Wnt signaling pathway by blocking receptor…
Read more
Genes have more than one start site?
Read more
CTE differs from Alzheimer's disease in protein folding
Read more
A 'druggable' mechanism of tau protein pathology
Read more
Protocols
Metaboverse enables automat…
By newseditor
Posted 02 Jun
Ratphones: An Affordable To…
By newseditor
Posted 31 May
BigNeuron: A resource to be…
By newseditor
Posted 29 May
Designed active-site librar…
By newseditor
Posted 27 May
A microfluidics-enabled aut…
By newseditor
Posted 22 May
Publications
Adolescent exposure to low-…
By newseditor
Posted 02 Jun
The P-body protein 4E-T rep…
By newseditor
Posted 02 Jun
The E3 ubiquitin ligase FBX…
By newseditor
Posted 01 Jun
AMPK is a mechano-metabolic…
By newseditor
Posted 01 Jun
Heart rate variability duri…
By newseditor
Posted 01 Jun
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 10 Mar
ASCO-2020-GYNECOLOGIC CANCER
By newseditor
Posted 10 Mar