A team of scientists working on the intersection between biology and computation has found that random gene activity helps patterns form during development of a model multicellular system.
We all start life as a single cell, which multiplies and develops into specialised cells that carry out different functions. This complex process relies on precise controls along the way, but these new findings suggest random processes also contribute to patterning.
In research published in Nature Communications, the scientists describe their discovery of surprising order in randomness while studying bacterial biofilms.
A biofilm develops when free-living single-celled bacteria attach to a surface and aggregate together to start multiplying and spreading across the surface. These multiplying individual cells mature to form a three-dimensional structure that acts like a multicellular organism.
And while individual cells can survive on their own, these bacteria prefer to work together with biofilms being the dominant form found in nature. The biofilm consortium provides bacteria with various survival advantages like increased resistance to environmental stresses.
The researchers developed a new time-lapse microscopy technique to track how genetically identical single cells behave as the living biofilm developed.
The joint lead-author, said: "We looked at how cells decide to take on particular roles in the biofilm. We found that towards the surface of the biofilm there were two different cell types frequently present - cells that form dormant spores and those that keep growing and activate protective stress responses. These two cell types are mutually exclusive, but they both could exist in the same location."
They focussed on obtaining a detailed picture of how gene expression (whether genes are active or inactive) changes over time for the individual cell types, specifically on expression of a regulatory factor, called sigmaB, which promotes stress responses and inhibits spore formation. They found that sigmaB randomly pulses on and off in cells at hourly intervals, generating a visible pattern of sporulating and stress-protected cells across the biofilm.
To understand the implications of the pulsing, the researchers generated a mathematical model of the sigmaB-controlled stress response and sporulation systems.
Another joint lead-author, said: "The modelling revealed that the random pulsing means that at any one time only a fraction of cells will have high sigmaB activity and activation of the stress pathway, allowing the remainder of cells to choose to develop spores. While the pulsing is random, we were able to show through a simple mathematical model that increasing expression of the gene creates shifting patterns among the different regions of the biofilm."
The results demonstrate how random pulsing of gene expression can play a key role in establishing spatial structures during biofilm development.
The author said: "This randomness appears to control the distribution of cell states within a population - in this case a biofilm. The insights gained from this work could be used to help engineer synthetic gene circuits for generating patterns in multi-cellular systems. Rather than the circuits needing a mechanism to control the fate of every cell individually, noise could be used to randomly distribute alternative tasks between neighbouring cells."
https://www.nature.com/articles/s41467-020-14431-9
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fstochastic-pulsing-of&filter=22
Random gene expression pulsing enables bacterial biofilm growth
- 3,130 views
- Added
Edited
Latest News
How formaldehyde affects ep…
By newseditor
Posted 30 Nov
Distinct brain activity tri…
By newseditor
Posted 30 Nov
AI based histologic biomark…
By newseditor
Posted 30 Nov
Repairing nerve cells after…
By newseditor
Posted 30 Nov
A gene regulating fat stora…
By newseditor
Posted 30 Nov
Other Top Stories
Salamander spinal cord regenerates but humans do not, why?
Read more
Gene regions associated with sleep duration identified
Read more
Molecular correlates of preterm birth
Read more
Normal vs Alzheimer's aging in brain!
Read more
Losing hearing for a while after listening to loud sounds explained!
Read more
Protocols
Personalized drug screening…
By newseditor
Posted 30 Nov
Multi-chamber cardioids unr…
By newseditor
Posted 29 Nov
Microfluidic-based skin-on-…
By newseditor
Posted 28 Nov
Biology-guided deep learnin…
By newseditor
Posted 26 Nov
Accurate prediction of prot…
By newseditor
Posted 25 Nov
Publications
Pleiotrophin ameliorates ag…
By newseditor
Posted 30 Nov
Mitf is a Schwann cell sens…
By newseditor
Posted 30 Nov
OsHLP1 is an endoplasmic-re…
By newseditor
Posted 30 Nov
Probiotic treatment with Bi…
By newseditor
Posted 30 Nov
Metabolic immunity against…
By newseditor
Posted 30 Nov
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar