A research team has discovered a group of brain cells that boosts appetite when there is a prolonged surplus of energy in the body, such as excess fat accumulation in obesity.
The researchers discovered that these cells not only produced the appetite-stimulating molecule NPY, but they in fact made the brain more sensitive to the molecule, boosting appetite even more.
“These cells kickstart changes in the brain that make it more sensitive to even low levels of NPY when there is a surplus of energy in the body in the form of excess fat – driving appetite during obesity,” explains the senior author of the study.
“Our study addresses a long-standing question about how appetite is controlled in obesity and has the potential to take the development of therapy into a new direction.”
The research was published in the journal Cell Metabolism.
Obesity is a major public health issue and a disease that affects more than one in 10 adults and increases a person’s risk of developing other chronic conditions, such as diabetes or heart disease. While many factors can influence the development of obesity – an excessive accumulation of fat tissue in the body – eating patterns and physical activity levels are key contributors.
“Our brain has intricate mechanisms that sense how much energy is stored in our body and adjust our appetite accordingly. One way it does this is through the molecule NPY, which the brain produces naturally in response to stresses, such as hunger, to stimulate eating,” says the senior author.
“When the energy we consume falls short of the energy we spend, our brain produces higher levels of NPY. When our energy intake exceeds our expenditure, NPY levels drop and we feel less hungry. However, when there is a prolonged energy surplus, such as excess body fat in obesity, NPY continues to drive appetite even at low levels. We wanted to understand why.”
In mouse models of obesity, the researchers investigated cells in the brain called neurons that produced NPY and discovered that surprisingly, 15% of them were different – they did not shut down NPY production during obesity.
“We found that under obese conditions, appetite was mostly driven by NPY produced by this subset of neurons. These cells did not only produce NPY, but also sensitised other parts of the brain to produce additional receptors or ‘docking stations’ for the molecule – supercharging appetite even further,” says the author.
“What we have uncovered is a vicious cycle that disrupts the body’s ability to balance its energy input with energy storage and enhances obesity development.”
“Our brain is wired to resist energy deficiency or weight loss, as it sees this as a threat to our survival and kickstarts mechanisms that increase our appetite so that we seek out food. As we found now, this even occurs when we have excess energy stored in the body,” explains the author.
The researchers say their discovery opens the possibility of blocking the additional, more sensitised receptors for NPY as a new approach to developing anti-obesity medication.
“Our discovery helps us better understand the mechanisms in the brain that interfere with a balanced energy metabolism and how they may be targeted to improve health,” says the senior author.
https://www.cell.com/cell-metabolism/fulltext/S1550-4131(23)00177-8
Brain cells that drive appetite in obesity
- 821 views
- Added
Latest News
Citrullination is a key pla…
By newseditor
Posted 14 Sep
Senolytic therapy clinical…
By newseditor
Posted 14 Sep
Genetic tools probe microbi…
By newseditor
Posted 13 Sep
A secret passage for mutant…
By newseditor
Posted 11 Sep
Specialized T cells in the…
By newseditor
Posted 10 Sep
Other Top Stories
Unknown features associated with cancer recurrence detected by arti…
Read more
Mechanism of action of melanoma protein B-Raf
Read more
Leukemia detection using artificial intelligence
Read more
Protein interactions in kidney cancer
Read more
Brain tumor organoids may be key to time-sensitive treatments for g…
Read more
Protocols
Genetic manipulation of Pat…
By newseditor
Posted 13 Sep
Single-nucleus RNA sequenci…
By newseditor
Posted 08 Sep
Engineering RNA export for…
By newseditor
Posted 25 Aug
ATP production from electri…
By newseditor
Posted 21 Aug
Labeling PIEZO2 activity in…
By newseditor
Posted 20 Aug
Publications
Timing of lifespan influenc…
By newseditor
Posted 16 Sep
Transformer-based biomarker…
By newseditor
Posted 16 Sep
Somatic variants of MAP3K3…
By newseditor
Posted 16 Sep
The NLRP3 inflammasome and…
By newseditor
Posted 15 Sep
Targeting the metabolism of…
By newseditor
Posted 15 Sep
Presentations
Hydrogels in Drug Delivery
By newseditor
Posted 12 Apr
Lipids
By newseditor
Posted 31 Dec
Cell biology of carbohydrat…
By newseditor
Posted 29 Nov
RNA interference (RNAi)
By newseditor
Posted 23 Oct
RNA structure and functions
By newseditor
Posted 19 Oct
Posters
A chemical biology/modular…
By newseditor
Posted 22 Aug
Single-molecule covalent ma…
By newseditor
Posted 04 Jul
ASCO-2020-HEALTH SERVICES R…
By newseditor
Posted 23 Mar
ASCO-2020-HEAD AND NECK CANCER
By newseditor
Posted 23 Mar
ASCO-2020-GENITOURINARY CAN…
By newseditor
Posted 23 Mar