Although the vast majority of research on the gut microbiome has focused on bacteria in the large intestine, a new study--one of a few to concentrate on microbes in the upper gastrointestinal tract--shows how the typical calorie-dense western diet can induce expansion of microbes that promote the digestion and absorption of high-fat foods.
Several studies have shown that these bacteria can multiply within 24 to 48 hours in the small bowel in response to consumption of high-fat foods. The findings from this study published in the journal Cell Host and Microbe suggest that these microbes facilitate production and secretion of digestive enzymes into the small bowel.
Those digestive enzymes break down dietary fat, enabling the rapid absorption of calorie-dense foods. Concurrently, the microbes release bioactive compounds. These compounds stimulate the absorptive cells in the intestine to package and transport fat for absorption. Over time, the steady presence of these microbes can lead to over-nutrition and obesity.
"These bacteria are part of an orchestrated series of events that make lipid absorption more efficient," said the study's senior author. "Few people have focused on the microbiome of the small intestine, but this is where most vitamins and other micronutrients are digested and absorbed."
"Our study is one of the first to show that specific small-bowel microbes directly regulate both digestion and absorption of lipids," the senior author added. "This could have significant clinical applications, especially for the prevention and treatment of obesity and cardiovascular disease."
The study involved mice that were germ-free, bred in isolated chambers and harboring no intestinal bacteria, and mice that were "specific pathogen free (SPF)," meaning healthy but harboring common non-disease causing microbes.
The germ-free mice, even when fed a high-fat diet, were unable to digest or absorb fatty foods. They did not gain weight. Instead, they had elevated lipid levels in their stool.
SPF mice that received a high-fat diet did gain weight. This diet quickly boosted the abundance of certain microbes in the small intestine, including microbes from the Clostridiaceae and Peptostreptococcaceae families. A member of Clostridiaceae was found to specifically impact fat absorption. The abundance of other bacterial families decreased on a high-fat diet including Bifidobacteriacaea and Bacteriodacaea, which are commonly associated with leanness.
When germ-free mice were subsequently introduced to microbes that contribute to fat digestion, they quickly gained the ability to absorb lipids.
"Our study found that, at least in mice, a high-fat diet can profoundly alter the microbial make-up of the small intestine," author said. "Certain dietary pressures, such as calorie-dense foods, attract specific bacterial strains into the small intestine. These microbes are then able to allow the host to digest this high-fat diet and absorb fats. That can even impact extra-intestinal organs such as the pancreas."
"This work has important implications in developing approaches to combat obesity," the authors conclude. This includes decreasing the abundance or activity of certain microbes that promote fat absorption, or increasing the abundance of microbes that may inhibit fat uptake.
"I would say the most important takeaway overall is the concept that what we eat--our diet on a daily basis--has a profound impact on the abundance and the type of bacteria we harbor in our gut," said lead author of the study. "These microbes directly influence our metabolism and our propensity to gain weight on certain diets."
Although this study was very preliminary, lead author added, "our results suggest that maybe we could use pre- or probiotics or even develop post-biotics (bacterial-derived compounds or metabolites) to enhance nutrient uptake for people with malabsorption disorders, such as Crohn's disease, or we could test novel ways to decrease obesity."
https://www.uchicagomedicine.org/gastrointestinal-articles/specific-bacteria-in-the-small-intestine-are-crucial-for-fat-absorption
http://www.cell.com/cell-host-microbe/fulltext/S1931-3128(18)30140-9
Latest News
Early signs of Parkinson's disease seen in general health parameters
Structural changes in G6PD causes common blood disorder
Reversing cognitive decline in ageing by restoring immune cell metabolism
Why remdesivir does not fully stop the coronavirus
Trash removal during deep sleep!
Other Top Stories
Co-operation between ATP binding subunits required for ATPase proteasome function
Maternal bile acid transporter deficiency promotes neonatal demise
Phagocytosis mechanism
Clearest-ever images of enzyme that plays key roles in aging, cancer
Regulation of mRNA decay by ubiquitin through non-proteolytic mechanism
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Vegan diet in young children remodels metabolism and challenges the statuses of essential nutrients
A neurophysiological model of speech production deficits in fragile X syndrome
Reduced peroxisomal import triggers peroxisomal retrograde signaling
Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions
Diabetes, obesity, metabolism and SARS-CoV-2 infection: The end of the beginning
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I