To ensure survival, living organisms are equipped with defensive systems that detect threats and respond with effective counter measures.
Plants are known to mount quick defenses against a variety of threats--from attacking insects to invading pathogens. These intricate immune response mechanisms operate through a complex network that plant biologists have sought to untangle.
Crucial to these defenses is the timing and duration of immune responses. Humans are equipped with a strong and rapid inflammation response that is essential to ward off disease, but chronic and persistent inflammation can be harmful to our health. Similarly, plants feature defenses that are timed for rapid and effective responses against pathogens, yet tightly controlled to avoid threatening the host organism.
The researchers have discovered a critical "on-off" switch in the plant immune response system. As described in their report published in Nature Plants, they identified a new regulatory switching mechanism--an RNA-binding protein--that helps turn on immune responses a few minutes after attack. Hours later, the switch follows with a deactivation "off" signal to avoid self-inflicted damage to the plant.
"These findings have provided new insights into how the complex intricacies of plant immune responses are orchestrated to successfully fight off pathogens, and lay a path forward for improving plant disease resistance to ensure future food stability," said the senior author.
The novel switch was found in Arabidopsis plants to control splicing of mRNA transcripts that encode signaling protein regulators of the plant immune response. To turn immune defenses on, the researchers say, a simple chemical modification of the RNA-binding protein reverses mRNA splicing that normally keeps immune responses deactivated. To turn the immune response back off, a second chemical modification of the RNA-binding protein returns mRNA splicing to "normal," and the immune response is back to being held in check.
Mechanistically, IRR (IMMUNOREGULATORY RNA-BINDING PROTEIN) associates with and promotes canonical splicing of transcripts encoding defence signalling proteins, including the key negative regulator of pattern-recognition receptor signalling complexes, CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28). On immune activation by Plant Elicitor Peptides (Peps), IRR is dephosphorylated, disrupting interaction with CPK28 transcripts and resulting in the accumulation of an alternative splice variant encoding a truncated CPK28 protein with impaired kinase activity and diminished function as a negative regulator.
"This work went beyond simply identifying a new regulator of plant immunity," said the author, of the detailed mechanisms uncovered. "We discovered specific chemical modifications that control regulatory function, transcriptional targets of the regulator, differential splicing of the targets and precise effects of splicing on both target function and overall plant immune responses and disease resistance."
https://ucsdnews.ucsd.edu/pressrelease/novel-on-off-switch-discovered-in-plant-defenses
https://www.nature.com/articles/s41477-020-0724-1
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fdynamic-regulation-of&filter=22
Plant defense 'on-off' switch discovered!
- 815 views
- Added
Edited
Latest News
Linking endosomal trafficking to aggressive brain cancer
Overactive food quality control system triggers food allergies
How plants produce defensive toxins without harming themselves
Artificially infect mosquitoes with human malaria to identify new chemicals
Basophil-neuronal axis in acute itch in eczema
Other Top Stories
Gene-editing technique successfully stops progression of Duchenne muscular dystrophy
Powerful interactive tool to mine data from cancer genome
New imaging agent to distinguish tumor and non-tumor cells
Tunable tag for protein imaging
Recording whole-brain activity in moving animals
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
An Arf/Rab cascade controls the growth and invasiveness of glioblastoma
Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV P…
MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degen…
Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis
MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I