How does a developing plant shoot know how, where, and when to grow? Dividing cells need to pass messages from one another to coordinate growth. In plants, important messages are packaged into RNA, which are sent from cell to cell.
By studying the mustard-like plant Arabidopsis thaliana, a research team found that RNA messages need a special protein to escort them where they need to go. Without this escort, cells cannot coordinate and the plant fails to develop properly.
Unlike animal cells, plant cells are surrounded by a rigid cell wall. Messages can cross this wall through tiny holes called plasmodesmata. The lead author of the study, says, “Plasmodesmata are nanochannels embedded in the cell wall. They mediate various signals’ transport from cell to cell, including protein, RNA, hormones, ions, and nutrients.”
The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown.
The authors wondered how the plasmodesmata’s gates regulate messaging from one cell to the next. The team discovered that RNA signaling relied on a protein called AtRRP44a. AtRRP44A can interact with plasmodesmata and mediates the cell-to-cell trafficking of KN1 mRNA, and genetic analysis indicates that AtRRP44A is required for the developmental functions of SHOOT MERISTEMLESS, an Arabidopsis KN1 homolog.
Lowering the amount of AtRRP44a slowed the movement of RNA messages; lacking the right messages, the plants failed to develop properly.
A protein similar to this escort protein is present in other plants, yeast, and animals. The researchers were able to swap out part of the Arabidopsis thaliana signaling system with parts from corn and restore normal development, showing that this signaling system is similar in many kinds of plants.
The author says, “Plants are very sophisticated. We think of them just sitting in their environment, not moving, but really they’re processing a lot of information. The different parts of the plant are talking to each other, sharing whether they have some pathogen attack or if they need some nutrients.”
In a related study published recently in the journal Science, the authors and collaborators found that signals transported through these gates can increase the number of cell layers in corn roots, making the plants potentially more resilient to environmental changes.
https://www.science.org/doi/epdf/10.1126/science.abm0840
Transport of RNA across the cells in plants!
- 870 views
- Added
Latest News
A vascularized model of the human liver regeneration
Norovirus and other "stomach viruses" can spread through saliva
GPUs to discover human brain connectome
Computer models predict Face dissimilarity
Activation of a glycolytic enzyme in the metastasis of pancreatic cancer
Other Top Stories
Neutrophil extracellular traps regulate ischemic stroke brain injury
Newborns' brains already organized into functional networks
How epileptic seizures originate
Tracking the cellular migration of developing fetal brains
Interferon drives cognitive impairment in Alzheimer's disease model
Protocols
Light and electron microscopic imaging of synaptic vesicle endocytosis at mouse hippocampal cultures
FLAMBE: A kinetic fluorescence polarization assay to study activation of monomeric BAX
Single-cell mass spectrometry
A behavioral paradigm for measuring perceptual distances in mice
Rapid detection of an Ebola biomarker with optical microring resonators
Publications
Conserved meningeal lymphatic drainage circuits in mice and humans
Junctional instability in neuroepithelium and network hyperexcitability in a focal cortical dyspl…
A vascularized model of the human liver mimics regenerative responses
Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells
Enteric viruses replicate in salivary glands and infect through saliva
Presentations
Hydrogels in Drug Delivery
Lipids
Cell biology of carbohydrate metabolism
RNA interference (RNAi)
RNA structure and functions
Posters
ASCO-2020-HEALTH SERVICES RESEARCH AND QUALITY IMPROVEMENT
ASCO-2020-HEAD AND NECK CANCER
ASCO-2020-GENITOURINARY CANCER–KIDNEY AND BLADDER
ASCO-2020-GENITOURINARY CANCER–PROSTATE, TESTICULAR, AND PENILE
ASCO-2020-GYNECOLOGIC CANCER