Scientists have discovered neurons in insect brains that compute 3D distance and direction. Understanding these could help vision in robots.
In stunning images captured under the microscope for the first time, the neurons were found in praying mantises. The work is published in Nature Communications.
In a specially-designed insect cinema, the mantises were fitted with 3D glasses and shown 3D movies of simulated bugs while their brain activity was monitored. When the image of the bug came into striking range for a predatory attack, scientists were able to record the activity of individual neurons.
The lead author of the paper said: "This helps us answer how insects achieve surprisingly complex behavior with such tiny brains and understanding this can help us develop simpler algorithms to develop better robot and machine vision."
Praying mantises use 3D perception, scientifically known as stereopsis, for hunting. By using the disparity between the two retinas they are able to compute distances and trigger a strike of their forelegs when prey is within reach. The neurons recorded were stained, revealing their shape which allowed the team to identify four classes of neuron likely to be involved in mantis stereopsis.
The images captured using a powerful microscope show the dendritic tree of a nerve cell - where the nerve cell receives inputs from the rest of the brain - believed to enable this behavior.
The lead explains: "Despite their tiny size, mantis brains contain a surprising number of neurons which seem specialised for 3D vision. This suggests that mantis depth perception is more complex than we thought. And while these neurons compute distance, we still don't know how exactly.
"Even so, as theirs are so much smaller than our own brains, we hope mantises can help us develop simpler algorithms for machine vision."
The senior author says: "In some ways, the properties in the mantises are similar to what we see in the visual cortex of primates. When we see two very different species have independently evolved similar solutions like this, we know this must be a really good way of solving 3D vision.
"But we've also found some feedback loops within the 3D vision circuit which haven't previously been reported in vertebrates. Our 3D vision may well include similar feedback loops, but they are much easier to identify in a less complex insect brain and this provides us with new avenues to explore."
It's the first time that anyone has identified specific neuron types in the brain of an invertebrate which are tuned to locations in 3D space.
The team intends to further develop their research to better understand the computation of the relatively simple brain of the praying mantis with the aim of developing simpler algorithms for machine and robot vision.
https://www.nature.com/articles/s41467-019-10721-z
http://sciencemission.com/site/index.php?page=news&type=view&id=publications%2Fa-neuronal-correlate-of&filter=22
Insect brain neurons that compute 3D distance and direction found
- 776 views
- Added
Edited
Latest News
Dopamine-based mechanism for transient forgetting
Synaptic size determines their signaling strength
Convalescent plasma treatment for immunodeficient COVID-19 patient
Reading system relies on general-purpose mechanisms
Metabolic remodeling by vegan diet in young children
Other Top Stories
Brain's immune cells put the brakes on neurons
Reference atlas of small noncoding RNAs in mouse tissues
Gene expression altered by direction of forces acting on cell
Reducing lignin levels in plants using CRISPR
Both excitatory and inhibitory systems play a role in memory consolidation
Protocols
Dual-Angle Protocol for Doppler Optical Coherence Tomography to Improve Retinal Blood Flow Measur…
Detection of protein SUMOylation in vivo
In vivo analysis of protein sumoylation induced by a viral protein: Detection of HCMV pp71-induce…
Determination of SUMOylation sites
miR-Selection 3'UTR Target Selection Kit
Publications
Postinfectious Epigenetic Immune Modifications – A Double-Edged Sword
Alpha 5 subunit-containing GABAA receptors in temporal lobe epilepsy with normal MRI
Sex differences in immune responses
Convalescent plasma-mediated resolution of COVID- 19 in a patient with humoral immunodeficiency
A general-purpose mechanism of visual feature association in visual word identification and beyond
Presentations
Homeostasis
PLANT MITOCHONDRIAL BIOLOGY
Photosynthesis
Endocrine Disorders
THE PITUITARY GLAND
Posters
ACMT 2020 Annual Scientific Meeting Abstracts - New York, NY
Abstracts from the 2020 Annual Scientific Meeting of the British and Irish Hypertension Society (…
ACNP 58th Annual Meeting: Poster Session III
ACNP 58th Annual Meeting: Poster Session II
ACNP 58th Annual Meeting: Poster Session I