Recyclable plastic!

Recyclable plastic!

Light yet sturdy, plastic is great - until you no longer need it. Because plastics contain various additives, like dyes, fillers, or flame retardants, very few plastics can be recycled without loss in performance or aesthetics. Even the most recyclable plastic, PET - or poly(ethylene terephthalate) - is only recycled at a rate of 20-30%, with the rest typically going to incinerators or landfills, where the carbon-rich material takes centuries to decompose.

Now a team of researchers has designed a recyclable plastic that, like a Lego playset, can be disassembled into its constituent parts at the molecular level, and then reassembled into a different shape, texture, and color again and again without loss of performance or quality. The new material, called poly(diketoenamine), or PDK, was reported in the journal Nature Chemistry.

"Most plastics were never made to be recycled," said lead author. "But we have discovered a new way to assemble plastics that takes recycling into consideration from a molecular perspective."

All plastics, from water bottles to automobile parts, are made up of large molecules called polymers, which are composed of repeating units of shorter carbon-containing compounds called monomers.

According to the researchers, the problem with many plastics is that the chemicals added to make them useful - such as fillers that make a plastic tough, or plasticizers that make a plastic flexible - are tightly bound to the monomers and stay in the plastic even after it's been processed at a recycling plant.

During processing at such plants, plastics with different chemical compositions - hard plastics, stretchy plastics, clear plastics, candy-colored plastics - are mixed together and ground into bits. When that hodgepodge of chopped-up plastics is melted to make a new material, it's hard to predict which properties it will inherit from the original plastics.

This inheritance of unknown and therefore unpredictable properties has prevented plastic from becoming what many consider the Holy Grail of recycling: a "circular" material whose original monomers can be recovered for reuse for as long as possible, or "upcycled" to make a new, higher quality product.

So, when a reusable shopping bag made with recycled plastic gets threadbare with wear and tear, it can't be upcycled or even recycled to make a new product. And once the bag has reached its end of life, it's either incinerated to make heat, electricity, or fuel, or ends up in a landfill, the senior author said.

 The researchers want to divert plastics from landfills and the oceans by incentivizing the recovery and reuse of plastics, which could be possible with polymers formed from PDKs. "With PDKs, the immutable bonds of conventional plastics are replaced with reversible bonds that allow the plastic to be recycled more effectively," the senior author said.

Unlike conventional plastics, the monomers of PDK plastic could be recovered and freed from any compounded additives simply by dunking the material in a highly acidic solution. The acid helps to break the bonds between the monomers and separate them from the chemical additives that give plastic its look and feel.

"We're interested in the chemistry that redirects plastic lifecycles from linear to circular," said the senior author. "We see an opportunity to make a difference for where there are no recycling options." That includes adhesives, phone cases, watch bands, shoes, computer cables, and hard thermosets that are created by molding hot plastic material.

The researchers first discovered the exciting circular property of PDK-based plastics when the lead author was applying various acids to glassware used to make PDK adhesives, and noticed that the adhesive's composition had changed. Curious as to how the adhesive might have been transformed, the author analyzed the sample's molecular structure with an NMR (nuclear magnetic resonance) spectroscopy instrument. "To our surprise, they were the original monomers," the senior author said.

After testing various formulations, they demonstrated that not only does acid break down PDK polymers into monomers, but the process also allows the monomers to be separated from entwined additives.

Next, they proved that the recovered PDK monomers can be remade into polymers, and those recycled polymers can form new plastic materials without inheriting the color or other features of the original material - so that broken black watchband you tossed in the trash could find new life as a computer keyboard if it's made with PDK plastic. They could also upcycle the plastic by adding additional features, such as flexibility.

The researchers believe that their new recyclable plastic could be a good alternative to many nonrecyclable plastics in use today.

"We're at a critical point where we need to think about the infrastructure needed to modernize recycling facilities for future waste sorting and processing," said the senior author. "If these facilities were designed to recycle or upcycle PDK and related plastics, then we would be able to more effectively divert plastic from landfills and the oceans. This is an exciting time to start thinking about how to design both materials and recycling facilities to enable circular plastics," said the senior author.

The researchers next plan to develop PDK plastics with a wide range of thermal and mechanical properties for applications as diverse as textiles, 3D printing, and foams. In addition, they are looking to expand the formulations by incorporating plant-based materials and other sustainable sources.

https://newscenter.lbl.gov/2019/05/06/recycling-plastic-from-the-inside-out/

https://www.nature.com/articles/s41557-019-0249-2

Edited

Rating

Unrated
Rating: